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Abstract
Urban Heat Islands (UHIs) pose a growing health risk by exacerbating heat
stress for residents of urban areas. Due to the increased prevalence of extreme
weather events, urbanization and heat waves and as a cause for higher energy
consumption, UHIs become more relevant as a topic for city planners and policy
makers to consider. Identification of areas most impacted or at risk require a
data backed tool set to aid urban planning. This work investigates the impact
and influence of rising temperatures and land use changes in cities on the
severity of the UHIs within them. In this case study different methodologies
where combined and extended to find UHIs within the city of Bremen. The
introduction of a statistical measure reduces seasonal effects on severity of
UHIs. The study shows that sealed surface types are dominant in strong UHIs
(with more than 3σ above average temperature of the surrounding rural area).
The data indicate an increase in size and a combining of surface urban heat
islands with rising temperatures. More research could give insight in how this
impacts air temperatures and if vegetation corridors within affected areas could
limit and mitigate this effect.
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1 INTRODUCTION

1 Introduction

The investigation of Urban Heat Islands are a very important topic in times of climate
change and urbanization.
Urban environments have been the interest of studies for a long time, but increases in
frequency and intensity of extreme weather events and heat waves are significantly more
likely to happen (Uhe et al. 2016). These are expected to appear with intensities that were
nearly impossible without the impact of climate change (Bador, Terray, and Boé 2016).
This is well understood and can be attributed to anthropogenic climate change on larger
scales, but local effects and impact of climate change on a small scale is harder to simulate
and understand. The major issue is that the missing impact of localized phenomena such as
weather, terrain and urban climate are not covered by climate models, making prediction
of extreme heat waves with high accuracy difficult (Van Oldenborgh et al. 2022). Studying
and understanding the local urban climate has a long history, including the understanding
of Urban Heat Islands (UHIs) and impacts of urban atmospheric pollution on humans and
the greater atmosphere. Together with research the need for tools and data processing
platforms are demanded by different organisations (such as the Inter-Agency Standing
Committee (Extreme heat 2022) and the Environmental Protection Agency (Launching a
Cross-Agency Temperature Network 2024)) to prepare affected areas and organisations
for heat mitigation in urban areas.

1.1 An historical overview of urban heat research

The scientific investigation of the urban climate and the influence of human settlements
and activity on the local atmosphere and temperature has been studied for more then
200 years. Howard 1833 investigated the climate of London in a study from 1819 to 1827
and a similar study was conducted in Paris in the 1850s by Renou 1862. The first mobile
measurement campaigns around the topic of urban climate were conducted by Peppler
1929 and Tollner 1932 and investigated the spacial distribution of temperatures within
urban areas in the 1920s in Germany and Austria. This type of measurement were repeated
in multiple cities around the globe at the time.
The term UHI was coined in the 1960s in publications regarding case studies in Lon-
don (Chandler 1961) and Montreal (Oke 1968). During this time the influences and
understanding of the interaction between the human industrial activity, the land change
by urbanisation and industrialization and the influence of these factors on temperatures
was investigated by numerous case studies using fixed or mobile weather stations. Health
problems within industrial areas or incidents like the 1930 Meuse valley fog catastrophe, in
which exhaust gases, including fluorine gas, combined with an inversion weather condition,
forming a cloud over the area causing the death of at least 60 people (Nemery, Hoet, and
Nemmar 2001).
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1 INTRODUCTION

The Great Smog of London in 1952, a similar event lasting four days, causing 4000 direct
deaths and between 10000 and 12000 deaths from consequences of the fog in the months
after (Bell, Davis, and Fletcher 2004), triggered scientific interest in the interaction be-
tween human settlement, pollution and meteorological phenomena on human health and
the environment. The investigation of incidents like this using scientific methods shaped
the idea of an man made urban climate.

To understand the urban meteorology in three dimensions the first use of balloons,
helicopters and air planes to measure vertical temperature profiles were documented in
the 1950s (Duckworth and Sandberg 1954). These studies focused on the atmospheric
heat distribution over urban areas and resulted in the development of physical energy
transport models for these atmospheric urban heat islands. These models required a
deeper understanding of the surface properties and the temperature distribution within
the urban area.

Then newly available remote sensing devices, such as infrared imagers, made it pos-
sible to observe the urban environment from above and detect temperature hot spots using
airborne and satellite images.
First investigations regarding the feasibility of this approach were proposed in the late 70s
(Watson 1975, Carlson, Augustine, and Boland 1977 and Block 1978) but the resolution of
satellite images were insufficient for detailed investigations of UHIs.
A first study using satellite infrared imagery were conducted in 1978 using the NOAA 5
Satellite (with a spacial resolution of 1km (Matson et al. 1978)).
Multiple studies in the 70s and 80s used images taken from planes or helicopters to aid
the investigation of smaller scale effects within the urban surface temperature distribution
(e.g. Landsberg 1979, Ljungberg and Norberg 1980 and Foster, Ormsby, and Gurney 1981).
With advances in satellite technology, the resolution and data availability increased sig-
nificantly. The Landsat program started in 1975 and with the launch of Landsat 4 in
1982 thermal infrared data of the whole planet were continuously provided. The infrared
resolution that allowed pixel sizes between 60 m (Landsat 7 ) and 120 m (Landsat 4 and
Landsat 5 ), made investigations of smaller patterns within urban areas possible.
Many different satellites have been launched since, closing gaps in spectral, spacial and
temporal coverage, with different resolutions for different use cases. Relevant for investiga-
tion of the urban climate are the ASTER and MODIS instruments on the Terra satellite,
providing a high revisit time and are useful for land cover monitoring. The ASTER
instrument provides thermal data with high spacial resolution and a large dataset was
created from ASTER data of the land surface properties (this dataset is used, among
others, in the creation of the Land Surface Temperature product form the Landsat 8 and 9
satellites). The European Space Agencys (ESAs) Copernicus satellites provide high spacial

2



1 INTRODUCTION

resolution visible data (Sentinel-2) as well as surface temperature (Sentinel-3).
The increased revisit frequency of roughly two weeks made remote satellite data a more

Figure 1: Number of Landsat Products per year over time (as of Feb. 2024) by the
USGS (U.S. Geological Survey 2024)

useful and widely used tool in the research on urban meteorology and urban heat islands.
Over the past 30 years, the amount of available remote sensing data skyrocketed, Landsat
8 and 9 alone produced over 6 million images since the start of operation in 2013. Figure 1
shows the number of scenes taken by the Landsat satellites per year. The rise in availability
on the one hand makes it easier for researchers and companies to use the data, requiring
increased computing and storage availability, to manage the increased data amount. This
offers the possibility of creating scientific studies covering a wide range of cities over time,
using the same sensor and tools.

In Sobrino and Irakulis 2020 a methodology to compare UHIs using Sentinel-3 images was
proposed and a broad study of UHIs severity in cities around the world was conducted.
Over the past years the number of scientific papers investigating the issue from multiple
angles increased significantly (ct. Piracha and Chaudhary 2022, P. 3 ).
In conclusion, the advancement of remote sensing technology, particularly the availability
of infrared imagers and satellite imagery, has revolutionized the study of UHIs. From the
early investigations and roots of the field in meteorology and public health the research
field expanded touching urban development, climate science, atmospheric chemistry and
medicine as well as social sciences.
The abundance of data provided by satellites like Landsat 8 and 9 now allows researchers
to conduct long duration, high resolution studies. Analysing urban surface temperature
distribution with unprecedented detail and accuracy. The increase in data availability has
not only facilitated research on urban meteorology and heat islands but has also presented
new challenges in terms of data management and analysis that require the creation of
performative analysis software and methods to extract, monitor and analyse urban areas
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during change.
Despite these challenges, the potential for conducting comprehensive studies across various
cities using consistent sensor data and combining multiple sensor sources allows a deep
understanding and continuous monitoring of the urban environment. The coming years
promise even more missions that can be used for detecting urban heat islands, with nearly
daily coverage and higher spacial resolution (e.g. ESAs LSTM mission with 50 m resolution
and a 4 day revisit time CEOS 2024). Together with fusion approaches to combine different
datasets to reduce error and increase spacial resolution (as done in e.g. Camps-Valls and
Bruzzone 2009), monitoring services, heat warning systems and verification of implemented
mitigations in cities by creating long term analysis of urban areas are about to become
feasible.

The next step in advancing the comprehension of UHIs involves gaining a deeper under-
standing of how various parameters contribute to the formation and intensity of UHIs.
With the wider adaption and interest in to the introduction of countermeasures to UHIs
and climate change resilience techniques in different cities, continuous monitoring of UHIs
and the urban climate is necessary to judge effectiveness of the taken countermeasures.
To do this efficiently, statistical parameters and indices are crucial in order to assess the
effectiveness of the mitigation strategies.

1.2 Research Question

In this thesis, the impacts of land cover, land cover changes such as urbanisation, and
rising average temperatures due to anthropogenic climate change on the UHI phenomena
are investigated. The specific questions posed are:

1. What definition can be used to define UHIs comparably?

2. What is the influence of LU/LC change on the size of urban heat islands?

3. How significant is the impact of urbanisation on UHIs, both in terms of absolute
and relative temperature changes?

4. What is the effect of rising average temperatures on the UHIs effect?

5. What indices can be used or created to categorize and rate UHI intensity?

The first question tackles the problem that the UHI phenomenon and its definition was
refined over time. For answering the question different types of UHIs (see section 2.1)
have to be distinguished and methods for measuring them found. The goal is to find a
definition that allows investigation and detection of UHIs in a comparable way, to allow
global measurement and comparison between cities and regions.
The second and third question investigates the impact urbanisation and surface sealing
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on the intensity and size of urban heat islands. This can help in urban planning and
mitigation of effects of UHIs in areas at risk.
The goal of the fourth questions is to answer how much the rise of local temperature and
the global mean temperatures due to climate change is affecting the intensity and size of
UHI effect in cities. The fifth and last question shall answer what indices that are already
given can be used to describe heat islands or if there is the need to create a new index for
measuring intensity and human impact of UHI effects within cities.

1.3 Methodology

To address the outlined research questions, multispectral satellite images are used to
extract temperature and surface information. This data is used and processed and urban
areas are extracted. The data is compared with measurements from ground based stations
and statistical analysis is conducted to answer the questions posed above.

1.3.1 Data Sources

Multi-spectral visible and thermal infrared satellite images are used to measure and identify
Surface Urban Heat Islands (SUHIs) and analyse land surface temperature. The used
satellite data product is described in section 2.1.5. The LU/LC data is referenced against
a LU/LC product for validation.
For air temperature data the data of weather stations within the area of interest are used,
more details can be found in the section 5.3 and section 6.3.

1.3.2 Procedure

The satellite data (s. section 2.1.5) is selected using filters and manual selection to find
cloud free images of the area of interest in the time period that was selected for analysis.
The dataset is downloaded and the area of interest is extracted to reduce the data footprint.
This dataset is also used to classify the land cover to allow short term land cover analysis
using machine learning algorithms for classification. For the further analysis a time series
of LU/LC is created for the city of Bremen.
From the dataset a longitudinal analysis of UHIs intensity over time is created. For the
selected days where satellite cover is available, temperature data and other sources are used
to create indices to measure heat stress and other parameters for assessing UHIs intensity
at different days. This data can then be used to create projections of UHIs development
based on the findings from SUHI measurements and LU/LC analysis. Section 3.2 explains
the used processing steps in detail.
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1.4 Structure of the Thesis

In the introduction as well as in section 2, previous work and an overview of the current
understanding of the UHI effect and research in this area is given. Section 4 explains the
used adaptation of the proposed methodology by Sobrino and Irakulis 2020 to create a
definition of SUHIs that is usable for comparing UHIs in different cities. Section 5 explains
how the measurements and investigations of the impact of LU/LC changes by build up
where done. In section 6 the impact of changing temperatures an increase of extreme
weather phenomena on the intensity and seasonal variety of UHIs was investigated. After
these the section 7 combines the findings of the previous chapters, shows which further
studies could investigate the UHI phenomena and where this research could be improved.

6



2 BACKGROUND

2 Background

2.1 Urban Heat Islands

Urban Heat Islands (UHIs) are areas with increased temperature in urban areas. Due to
increase in global temperature as well as increased occurrence of extreme weather and
longer periods of heat waves, this phenomenon will likely increase in intensity and will also
occur in cities at higher latitudes (Sachindra et al. 2016, Wilby 2008, p. 904 ). UHIs are a
spacial phenomenon that occurs on different scales and intensities, this makes observation
using remote sensing data a good and widely used approach (Weng 2003).
UHIs are distinguished into surface and atmospheric UHIs as discussed in the sections
below. The major background effect behind UHIs is the change in energy transfer of
solar radiation on urban surfaces. Compared to rural areas, the urban environment has

Figure 2: The Urban Energy Budget (, Reprinted fromU.S. Environmental Protection
Agency (EPA) 2008, Fig. 7 )

additional reflective surfaces, creating additional energy transfer increasing the fraction of
the incoming short wave solar radiation that is not reflected back towards the atmosphere
(U.S. Environmental Protection Agency (EPA) 2008, p.12 ). Due to lower vegetation cover
and higher sealed surfaces the amount of latent heat due to evaporation and transpiration
is lower. The fraction of infrared radiation that is trapped within the urban area, especially
if the sky view factor is low, is higher.
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An additional influx of thermal energy is anthropogenic emission from industrial production.
The guiding equation is the equilibrium of incoming solar radiation and the outgoing
upwards radiation. The incoming radiation (Rn) is matched by

• Latent heat transfer of evaporation and transpiration (lE)

• Sensible heat transfer due to wind and upwelling warm air (H),

• Storage in surfaces (S)

• Metabolic conversion by photosynthesis (M)

This gives eq. (1) with Rn being positive and all other terms negative.

Rn + lE +H + S +M = 0 (1)

In rural areas, lE and M are bigger due to vegetation, while the S term is larger due to
surface properties mentioned above. H depends strongly on urban morphology, so urban
or rural areas can have higher sensible heat transfer rates.

Since the phenomenon is known for a long time, mitigation strategies have been proposed
to reduce the impact on well-being and intensity of the UHIs and are touched upon in
section 2.1.4. Section 4 will go into more detail of the definition of UHIs for comparison
within the scope of monitoring and remote sensing.

2.1.1 Atmospheric Urban Heat Islands

Atmospheric UHIs are sections with increased air temperatures within an urban area.
These are more dependent on weather and local topology and are in part caused by the
slower cooling rate of build up land, responsible for SUHIs. The main factors in forming
UHIs is the thermal storage capacity of materials used in urban areas like concrete, asphalt
and steel, that have a high heat capacity and heat up quickly during the day and emit
the stored thermal energy as sensible heat with a delay (eg. during the night (Prathap
Ramamurthy et al. 2014)). High surface sealing and lack of vegetation reduce surface water
availability and diminish evaporation and the cooling effect of latent heat causing more
thermal energy to be available as sensible heat. Another factor is the heat produced by
human activity such as industrial processes and combustion engines. As a consequence of
higher temperatures, active cooling devices (such as air conditioners) are more frequently
used for buildings and vehicles, converting electrical or chemical energy to thermal energy
stored in the urban atmosphere. The emitted thermal energy of these heat pumps further
increases the surrounding temperature, reinforcing the effect.
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2.1.2 Surface Urban Heat Islands

SUHIs are areas of higher surface temperatures within urban areas compared to rural
areas due to the materials used and heat from mobility, electrical appliances, heating and
cooling as well as less vegetation and higher sealed surfaces that reduce surface water
availability (U.S. Environmental Protection Agency (EPA) 2008, pp. 7–12 ). The SUHIs
are a small scale phenomenon that has a high seasonal variability and is most intense in
summer. SUHIs are an important factor for the development of atmospheric UHIs due to
the following factors:

• Surface material radiates off the stored heat during the night, increasing urban air
temperature

• Surface types are susceptible to regulatory influence allowing direct implementation
of countermeasures by local government and direct action of citizens.

• Surface materials are one major factor in the development of UHIs shown in section 5.

Since atmospheric UHIs can not be directly observed using remote sensing data and are
therefore not in focus of this work, the terms UHI and SUHIs are used interchangeably in
later sections of this document.
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2.1.3 Air pollution and Urban Heat Islands

Air pollution has been a documented problem for the quality of life since the start of the
industrialisation. While in the 19th and first half of the 20th century the major problem
came from unfiltered exhaust, burning coal and wood for heating and heavy industry. The
major pollutants in urban areas in the 21st century come from car exhaust, industrial
processes and by-products of industrial agriculture (Leung 2015 and McDuffie et al. 2021).
Especially large urbanized areas are susceptible to air pollution due to increased concen-
tration of combustion and industrial activity on a small area (Kanakidou et al. 2011). One
major pollutant with a significant health impact is tropospheric ozone, that is produced in
larger quantities within environments with elevated temperature (see Ebi and McGregor
2008).

Figure 3: Temperature dependence of iso-
prene emission of 15 minute (TM)
and 15 day (TD) mean temperature,
with permission from Guenther et
al. 2000

Ozone in the troposphere is mainly pro-
duced when (anthropogenic) NOx emissions
from fossil fuel burning and Volatile Organic
Compoundss (VOCs) from anthropogenic
or natural sources react with oxygen un-
der UV influence in a photochemical reac-
tion. The creation of ozone is dependent
on UV intensity (and therefore insolation)
and temperature, increasing between 2.2
and 3.2 ppbv/°C depending on NOx and
VOCs availability. Recent studies found
that reduction of NOx and VOCs concentra-
tion, reduces O3 temperature dependence
(Otero, Rust, and Butler 2021). Sources of
VOCs are mainly of natural origin (Kansal
2009), anthropogenic sources are vapours
and fumes from solvents and mainly orig-
inate from industrial processes while the
main natural source of VOC are trees. Trees
and other plants release VOCs like isoprene
and terpenes as a protective mechanism
against temperature stress and to protect
from insects and pests. The usefulness of
these VOCs for trees varies over the year.
This gives the VOC and the resulting O3

emission a high seasonal variability (see Fig-
ure 3). The resulting tropospheric ozone, is
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a major health concern, it is directly toxic to humans and is shown to cause lung damage
by oxidative stress in the lung lining tissue (see Mudway and Kelly 2000). With rising
global temperatures the number of days with temperatures causing heat stress in trees (e.g.
with a temperature above 30 °C shown in Figure 3) has been increasing even at higher
latitudes ( Figure 4 shows the German average of days exceeding 30 °C growing from 1950
from an average of 5 to 11.3 in 2023). Due to the effect of UHIs causing a further increase

Figure 4: Days with a maximum temperature of more then 30 °C in Germany (Reprinted
from Wilke 2023)

in temperature within urban areas, there is an expected increase of tropospheric ozone
levels due to higher VOCs emission from urban and sub-urban trees due. This increases
air pollution increases mortality and causes other negative health consequences within
urban areas (shown in Ebi and McGregor 2008).
Studies have shown, that reduction of UHIs by urban greening reduces the amount of
ozone by 5–8% (Fallmann, Forkel, and Emeis 2016, p.209 ).

2.1.4 Mitigation techniques for Urban Heat Islands

There are multiple adverse effects and possible mitigation techniques for the reduction of
UHIs (e.g. Nichol 1994 and Stewart 2011) some of which are natural phenomena. Advective
cooling can be observed when the temperature gradient generates airflow from the cooler
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surrounding areas towards the hot areas within the city, cooling it down according to the
second law of thermodynamics (Haeger-Eugensson and Holmer 1999).
Urban areas with no close water body and with low average wind speed are more likely
to be affected by urban heat islands (P. Ramamurthy and Bou-Zeid 2017). Since water
reduces the severity of heating, due to sea breezes as well as latent heat transport and acts
as a thermal capacity, dampening heating effects. Higher temperatures due to UHIs cause
stress to animals and humans, increasing health risks due to heat stroke and increased
surface level ozone concentration (see Santamouris 2020).
The attempt to reduce urban heat build-up and the associated heat related health problems
in cities is older than scientific work on this field of study. In hot areas around the globe
different methods were used to create spaces with cooler temperatures for rest and work.
All over the Mediterranean, houses are painted white to increase albedo of roof surfaces,
decreasing heat build-up. In newer studies, this traditional painting pattern has shown to
be an efficient counter to high solar intensities (Fayad, Maref, and Awad 2021).
Another method of larger scale cooling is the increase of vegetation to increase latent heat
transport and water availability. Two basic physical principles make water well suited for
cooling and energy transfer. Water has a latent heat of vaporization of 2440kJ · kg−1 at 25

° C and the capacity of water vapor in higher temperature air is increasing exponentially.
Saturation vapor concentration increases from ≈ 17.5g · m−3 at 20 ° C to ≈ 52g · m−3

at 40 ° C. This means that, given surface water availability, high amounts of water can
be vaporized and will carry away higher amounts of thermal energy in higher temper-
ature condition. Reducing temperature in the surrounding area. Active evaporative
cooling was used and studied in arid climates over the past decades, showing effective
at low air humidity providing 10 to 15 K cooling during high heat hours (Vanos et al. 2022).

While high relative humidity, at high temperatures, has significant health risks (see
section 2.4.2), evaporation reduces temperature. Pontes et al. 2022 developed a comfort
zone, based on the Heat Index, founded on field measurements and previous research.
This could be used to find an optimum between increase in relative humidity and air
temperature e.g. by limiting the use of moisture based active cooling or adding evaporation
control covers as already shown effective in areas with high insolation Ghazvinian et al.
2021.
Green roof concepts, green facades, parks or street trees all show effective in reducing
temperatures within the urban environment (see Dimoudi and Nikolopoulou 2003; Feyisa,
Dons, and Meilby 2014; Gartland 2008; Prathap Ramamurthy et al. 2014). The study
by Fallmann, Forkel, and Emeis 2016 mentioned in section 2.1.3 also showed that urban
greening has a more beneficial effect compared to high reflective surfaces. Due to the
increase in back scattering of high energy radiation of reflective surfaces, ozone is created
during high insolation, providing additional health risks. The same simulation showed that
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urban greening can limit boundary layer mixing due to reduced thermal updraft caused
by lower turbulent kinetic energy, increasing pollution levels at street level. This problem
can be solved by employment of established methods for reduction in urban pollution,
e.g. increase of public transport and regulation or taxation for high pollution vehicles and
industries.
Adding water bodies inside the city as well as “sponge-city”-concepts are also promising
approaches to mitigate heat islands (He et al. 2019). Increasing the water available can
also be archived using different, less sealed surfaces, such as grass pavers or permeable
pavements, that cause less run-off (U.S. Environmental Protection Agency (EPA) 2008, p.
7 ).

2.1.5 Landsat 8 & 9 Dataset

Figure 5: Landsat 8 and 9 instrument spectral bands (second to last row) compared to
other Landsat missions(USGS 2014)

Using remote sensing data to detect and analyse SUHI requires devices that are able to
detect thermal infrared radiation. Satellites that are equipped with thermal infrared sensors,
are able to detect upwelling emission from the surface within the 8µ m < λ < 12 µm range.
Instruments that were previously used for measuring UHIs are Landsat, MODIS, ASTER
and Sentinel-3. In the following steps data from the Landsat 8 and Landsat 9 satellites
were used. Landsat 8 and Landsat 9 both have a TIRS (Thermal Infrared Sensor) and
an OLI (Operational Lands Imager) instrument on board that measure in two and nine
bands respectively. Since the start of Landsat 9 the availability of scenes increased and
the shorter revisit times allow a denser mapping and reduced risk of cloud cover.
The OLI covers a wavelength of 0.43 µm to 1.83 µm separated into 9 bands with a
resolution of 30 m per pixel (see Figure 5). For the calculation of thermal infrared emission
of the Earth’s surface the TIRS instrument contains two bands within the thermal infrared
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covering wavelength between 10.6 µm and 12.51 µm with a resolution of 100 m. Both
satellites have a revisit time of 14 days.

2.2 Land Surface Temperature

Land surface temperature is the temperature at which an object emits infrared radiation
according to plank’s law (Liang and J. Wang 2020). Using remote sensing methods this
quantity can not be directly observed since the satellite is observing Top of Atmosphere
(TOA) brightness temperature. This temperature can be transformed to a LST using
atmospheric correction and correction for the emissivity of the ground. The conversion
factor is data source dependent and can be found in section 6.2.2.

2.3 Air Temperature

Urban heat islands that directly impact human health are the atmospheric UHIs in the
urban canopy layer. These are defined by the air temperature from street level up to roof
height. The air temperature within the urban area is warmed differently from the air

Figure 6: Overview of the Urban Atmosphere (Fabrizi, Bonafoni, and Biondi 2010, Figure
1 )

temperature outside the urban area, due to higher thermal mass that buildings and sealed
surfaces have and lower latent heat transport. During the day the air temperature is
lower than the surface temperature (U.S. Environmental Protection Agency (EPA) 2008),
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during the night the hot surfaces radiate off the energy heating the surrounding air.
There are multiple additional factors impacting urban air temperature. Combustion from
traffic and industrial processes produce heat as a by-product heating the surrounding air.
HVAC systems also produce heat, when cooling buildings. This further increases the air
temperature, increasing cooling need within the urban area, creating a positive feedback
loop.

2.4 Indices

Many different indices are used for analysis of images or parameters in remote sensing,
atmospheric physics and meteorology. The following sections introduce the indices that
where used to analyse the UHIs within this work.

2.4.1 NDVI

The following section is a slightly reworked version of a section from the pre-thesis master
project (Andrae 2023, see)
The NDVI is an widely used index using the difference of the red and near infrared bands

Figure 7: Absorption spectrum of green vegetation (Smith 2012, P. 5 )

to determine the amount of green vegetation.

NDV I =
Red−NIR

Red+NIR
(2)
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For Landsat 8 and 9 data, channel 4 (red 0.640 µm − 0.670 µm) and channel 5 (near
infrared 0.850 µm − 0.880 µm) where used. As shown in Figure 7 healthy plants reflect
near infrared and there is a sharp rise in reflectance between the two used channels at
around 0.700 µm. By using the difference of the two color bands on opposite sides of the
edge, the NDVI provides an inside how much healthy green vegetation is present in each
pixel.

(a) NDVI of Bremen (Bands 5 and 6) using
Landsat 7 data on 2019–07–23

(b) NDVI of Karlruhe (Bands 4 and 5) using
Landsat 8 data on 2023–06–07

Figure 8: NDVI Images from the different satellites

2.4.2 Heat Index

The Heat Index (HI) is a temperature index that takes sultriness into account and rates
the impact of temperature and air humidity of the human body. The output of this
temperature scale (given in °C) is the apparent temperature, depending on relative air
humidity. The defined range is between 20 °C and 50°C dry bulb temperature and up to
90% relative humidity (Steadman 1979, p. 862 ). The HI is based on a model human and
takes wind chill and clothing into account, to produce a apparent temperature of the model
human. The HI can be used as a good reference for non-extreme conditions. Its biggest
downside is the missing account for direct insolation on body temperature and comfort.
Schoen 2005 created an polynomial approximation for the heat index table developed by
Steadman (Steadman 1979), with ±0.7 ° C for temperatures above 27 degrees that was
used for rating heat island severity.

HI = c1 + c2T + c3R + c4TR + c5T
2 + c6R

2 + c7T
2R + c8TR

2 + c9T
2R2 (3)

with T being the wet bulb globe temperature and R being the relative humidity. c1

to c9 are factors for correction depending on temperature, wind chill and where taken
from Cassano 2010. For extreme conditions the HI shows an underestimation during heat
waves (Romps and Y.-C. Lu 2022), limiting the usefulness for these scenarios.
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2.5 Wet Bulb Globe Temperature

To account the impact of insolation on the human body and the effect on heat stress
exacerbated on the human body when high heat and insolation are present at the same
time, the Wet Bulb Globe Temperature was developed. Working under heat stress poses
a serious health issue, for this the Wet Bulb Globe Temperature (WBGT) was defined
as EN ISO 7243:2017 (ISO 2024) as work place safety standard, calculating the thermal
load on the human body. Heat exchange between the human body and the environment is
dominated by evaporation of secreted sweat. The efficiency of this process is determined
by the vapor pressure, that is influenced by the temperature and humidity difference. The
simpler HI is a way of calculating this impact while not taking radiant heat into account,
the WBGT does incorporate this effect into this calculation. It was specially developed to
help create safety for workers that work long hours outside with little or no shade, like
construction or agricultural workers or soldiers.
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3 Image Processing

Using remote sensing data for scientific purposes requires a

a systematic

b reproducible and

c verifiable

way of extracting patterns and information from the available dataset.
The field of image processing and machine learning has developed a wide range of tools
that are used in many different fields over the past decades.

3.1 Machine Learning

The term machine learning describes a sub-set of artificial intelligence research, focusing
on algorithms that use statistical models to find correlations using different weights to
approximate data. Machine Learning encompasses a wide range of techniques, including
supervised, unsupervised and reinforcement learning, as well as more specialized topics such
as deep learning and symbolic regression(Rodrigues 2023). In the context of remote sensing,
machine learning methods have been utilized for tasks such as classification, biomass and
soil moisture retrievals, and crop growth monitoring. Flexibility and comparably lower
computational requirements of machine learning methods allow processing of large amounts
of high-dimensional data and handle non-linear problems, enabling efficient analysis of
remote sensing data (Maxwell, Warner, and Fang 2018).
Physics-Informed Machine Learning allows integration of base truth to circumvent “hal-
lucinations” or false results, that can occur in other Machine Learning (ML) techniques
and aims to guide machine learning models towards solutions that are physically plausible.
Examples of applications of machine learning in physics include system identification,
control, and analysis, as well as the development of physics-informed digital twins. ML,
offering powerful tools for data analysis, modelling and gaining deeper understanding of
remote sensing and atmospheric research data. These approximations can be stored and
be used to detect the same features within new but similar data. For this analysis the
k-means algorithm was used. In the next sections the image processing steps are described
from a technical perspective and the underlying mathematical frameworks are discussed.

3.2 Data Processing Pipeline

An image or data processing pipeline is a chained list of processing steps, allowing to feed
different data through the same algorithm. Many different data processing and machine
learning lib use these to allow flexibility and modularity of the steps in data processing (e.g.
the used Scikit-Learn (Pedregosa et al. 2011), Keras (Keras Development Team 2024) or
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Gluon (AutoGluon 2024)). The data processing was done using a scikit-learn pipeline for
data analysis as well as multiple other lib listed in section 8.2.3. In Figure 9 the overview
of the different steps within the data processing can be seen.
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Start

Landsat 8 & 9 Image

Cut to AOI

Gabor Feature Extraction

KMeans clustering

Statistical analysis
of different classes

manual class name assignment

verification of classification

diff analysis of LU/LC classes

Stop

(a) Processing pipeline for training the
model

Start

Landsat 8 & 9 Image

Cut to AOI

Gabor Feature Extraction

Surface Classification
using the pre-trained model

Urban area Extraction

Statistical analy-
sis of image areas

LU/LC change detection

UHI detection

Statistical Analysis of UHIs

Stop

(b) Data Processing pipeline with the
trained Model

Figure 9: The image processing overview
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3.3 Gabor Feature Detection

Figure 10: Example kernel with
26×26 pixel kernel size

The Gabor filter is a linear filter using a
convolution of an image with a wavelet cre-
ated by rotating a sine modulated Gaussian.
This kernel type is also called the gabor
wavelet. Figure 10 shows an example of a
single Gabor filter kernel. In image pro-
cessing, this algorithm is used as a fea-
ture extraction algorithm, to extract and anal-
yse texture and structures of different sizes
within the image (Cerdan 1993). By ro-
tating the kernel and changing the frequency,
different textures are extracted from the im-
age.

Mathematically the Gabor-filter is defined by

g(x, y;λ, θ, ϕ, σ, γ) = exp

(
−x′2 + γ2 · y′2

2σ2

)
· exp

[
i
(
2π

x

λ
+ ϕ

)]
(4)

With x′ = x cos(ϕ) + y sin(ϕ) and y′ = −x sin(ϕ) + y cos(ϕ).
The x and y parameter determine the kernel size, this parameter should be chosen based
on the image size and expected structure length.
γ is the aspect ratio of the kernel, with γ = 1 the kernel is round, for smaller γ the kernel
becomes a more eccentric ellipse.
ϕ is the angle of phase shift of the sine component of the kernel.
θ is the angle of rotation of the kernel, detecting differently oriented features.
λ is the wavelength of the sine wave.
σ is the standard deviation of the Gaussian distribution.
To detect different structures of different scales within the image, a filter bank can be
created by combining multiple filters and varying ϕ, σ and θ.
After the convolution of the image with the filter bank, the resulting set of detected
features can be used as an input into different algorithms. Figure 11 shows the binary
output of different kernel sizes and rotations on a satellite image of Bremen. It can be
seen that the different structures such as fields (seen in Figure 11b and Figure 11e) or
larger structures and water bodies (seen in Figure 11a and Figure 11c) are extracted from
the image. The output of the filter is an tensor that contains a binary image sized matrix
per filter. Each layer provides meta information for each pixel, if it is part of a larger
scale texture or pattern. This meta information is used to add additional features for the
surface classification (section 5.1.1) using k-means to allow better classification.
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(a) Kernel with σ = 2, f = 0.05 and 0 °
rotation

(b) Kernel with σ = 2, f = 0.15 and 0 °
rotation

(c) Kernel with σ = 4, f = 0.05 and 0 °
rotation

(d) Kernel with σ = 2, f = 0.05 and 90 °
rotation

(e) Kernel with σ = 2, f = 0.15 and 90 °
rotation

(f) Kernel with σ = 4, f = 0.15 and 0 °
rotation

Figure 11: Result of convolving differently oriented Gabor wavelets with an Landsat-8
image of Bremen
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3.4 K-Means Clustering

K-means clustering is an unsupervised machine learning algorithm that is used to partition
n observations into k clusters. Each observation belongs to the cluster with the nearest
mean, serving as a prototype of the cluster. This method has many applications in data
mining, image processing and pattern recognition.
The algorithm consists of three steps:

1. Initialization: Choose k initial centroids from the data points.

2. Assignment: Assign each data point to the nearest centroid, forming k clusters.

3. Update: Recalculate the centroids as the mean of all data points in the cluster.

This process is repeated until a maximum number of iterations or minimal changes in
centroids is reached (Sinaga and Yang 2020).
There are multiple algorithmic implementations of K-Means, the specific algorithm
used for classification used the Lloyd-Algorithm. Mathematically a set of observations
(x1, x2, . . . , xn), where each observation is a d-dimensional real vector. K-means clustering
aims to partition the n observations into k (≤ n) sets S = {S1, S2, . . . , Sk} so as to
minimize the within-cluster sum of squares.
The objective is to find:

arg minS =
k∑

i=1

∑
x∈Si

∥x− µi∥2 (5)

where µi is the mean of points in Si. The k-means clustering algorithm has been suc-
cessfully used for surface classification using the feature enriched multi band satellite
data (e.g. Burrough, Gaans, and MacMillan 2000). Figure 16 shows the result of clustering
land surface types. The pre-trained model is stored to disk and can be used to classify
similar images again. Since the class labels are not consistently applied, the labels need to
be reassigned to the correct cluster. For this the cluster-centres from the trained k-means
are saved as a array of n-tuples for each class, where n is the number of features used for
training.
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3.4.1 Label Reassignment

The distance from the cluster centres of the initial training dataset and the centres of
the newly classified data is calculated. To get consistent mapping of class names to
classification id, the minimal distance is not sufficient since an assignment of multiple
classes to one original class has to be minimal. To mitigate this issue the Hungarian
Algorithm is used, minimizing an overlying metric and creating a bijective assignment.
The distances are then minimized using the sum of distances of all cluster centres as
optimization metric.

min =
∑
i

∑
j

Ci,jXi,j (6)

This ensures that the minimum distance is used and an optimal reassignment takes place,
even if cluster centres shift between images.
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4 Comparable Definition of Urban Heat Islands

The definitions of SUHIs in literature are varying slightly and do not take into account
that most definitions do not allow easy comparison between different areas or times. Local
studies often use a single reference measurement station and use the absolute temperature
difference as a measure of intensity. Others use the surface temperature of surrounding
rural areas like forests as a reference. The definition of the U.S. EPA ( U.S. Environmental
Protection Agency (EPA) 2008) and the German Weather Service (Deutscher Wetter Dienst
(DWD)) both define SUHI as an area of increased temperature between the urbanized
areas compared to the surrounding.
Different studies analysing UHIs use different reference temperatures. The first goal of
this work is defining a systematic reproducible approach to measure UHI intensity.

4.1 Approach

As a starting point the method of Sobrino and Irakulis 2020 was adapted, where SUHI
where compared in different cities around the world using Sentinel-3 images. For each city
a buffer zone was calculated around the city border, using the average temperatures of the
different areas as a comparison point. This was then used to identify and measure the
intensity of heat islands within the city area.
This work uses the same basic approach but Landsat 8/9 data was used. In Sobrino
and Irakulis 2020 urban adjacent, future urban adjacent and peri-urban areas are defined
as buffers. These where adapted by removing the urban growth projection (since the
scope of the paper was the investigation of SUHIs in 2050 that does not match the goal
for this work). The urban area is identified by detecting land cover classes indicating a
larger area of build up classes. These areas are then converted into a polygon that is
extended by buffer zones as shown in Figure 14. The classification was done using the
same dataset. Larger urban areas are removed from within the reference temperature area.
For the processing of the images and techniques for surface classification see section 5.1.1.
Additionally, an approach is discussed where the relative (statistical) intensity is used
compared to the absolute temperature difference to compensate for seasonal temperature
spread within certain areas.
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4.2 Definition of Urban Heat Islands

The following UHI definition is proposed and used throughout this document.

An SUHI is an area with increased surface temperature within an urban space. It is defined
as having a temperature at least 3 standard deviations above the average temperature
of the adjacent rural buffer zone. The rural buffer zone measurement is corrected for
temperature influence of larger settlements.

For comparability a statistical metric is used, since the absolute intensity as well as
the daily temperature spread varies with the seasons and is easily altered by water bodies
or other thermal masses in the image.
The proposed threshold of at least three standard deviations above the average temperature
was chosen since this gave consistent results over the seasons.
The reference measurement is calculated using the surface temperature of the peri-urban
buffer zone and removing all larger urban areas within it. The removal will get rid of the
temperature influence of other cities or larger industrial sides close to the area of interest.
The mean temperature and variation within the peri-urban area is then calculated and
used as reference. Depending on the season the temperature distribution will vary. Due to
the definition using the standard deviation, the detection of UHIs is coupled to the range
of temperatures observed within the image. During processing single outlier areas as well
as clouds, cloud shadows are removed. Holes within the urban area are closed, this allows
to include parks and other urban green areas to be processed and only includes larger
areas of elevated temperatures as urban heat islands. This will increase robustness of UHI
detection to reduce the influence of single hot surfaces (such as solar panels or industrial
tanks) during detection.

4.2.1 Urban Buffer Zones

To generate the different temperature statistics, buffer zones must be created. This is
done by defining multiple areas using eq. (7).

WU =
A

1
2
U

4

WP =
6 · A( 1

2
−WU )

U

4

(7)

Where AU is the urban area, extracted from the classification (see section 5.2.1), WU is the
suburban buffer zone and WP the peri-urban area. These definitions were used in Sobrino
and Irakulis 2020 and were initially developed in the 90s for modelling urban development
and are used in different areas of urban planning and analysis (Alkan-Bala and Üstüntaş
2014, see). These models follow the idea that cities have an influence space surrounding
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them and grow in all directions if not obstructed by borders or natural barriers. The
practical implementation used the results of the classification for urban area detection and
buffer zone creation and is described in more details in section 5.2.1.
The heat island is then defined as area that is more then 3σ above the mean temperature
of the surrounding area WP , while the surrounding area is defined as a fixed buffer based
on the size of the urban area and clean the area of larger settlements.

4.3 Conclusions

The definition of UHIs using reference regions and a statistical threshold for identifying
areas is a methodology that has multiple advantages compared to using absolute values and
single reference points. The impact of seasonal and geographic variations in temperature
spread as well as weather and other metereological effects are reduced, since the peri urban
area has a mixed composition.
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5 Impact of Land Cover Changes on Urban Heat Islands

One of the key factors influencing the intensity and distribution of UHIs is land cover
change. Change in LU/LC is primarily driven by urbanization and associated human
activities. Soil and surface properties impact the emissivity, thermal conductivity and
heat capacity of an area. Increases in the sealed surface fraction reduces surface water
availability (see section 2.1). This is changing the energy flow, increasing the heat build-up
within the urban area.
This section examines the relationship between land cover change and UHIs effects using
LU/LC detection based on the previously classified Landsat images. The first part of this
section begins with an overview of how land cover changes influence heat build-up within
the urban environment. Followed by how LU/LC can be detected using Landsat data and
how surface classification was done within this work.
This section then goes into detail how the classification of land cover was conducted using
Landsat 8 and 9 images, the analysis of spatial and temporal patterns of UHIs in relation
to the detected land cover classes follows. To answer the question 2 of the influence of
land cover change on intensity and size of UHIs, statistical analysis is conducted on the
UHIs within the area of Bremen.

5.1 Impact of Land Cover/ Surface Type on Heat Build-up

The change of the urban surface properties is one of the major factors causing SUHIs.
Multiple studies have shown that land cover has a significant impact on land surface
temperature and UHIs (e.g. Karakuş 2019, Weng, D. Lu, and Schubring 2004 and Stewart
2011). This is mainly caused by the physical thermal properties of the different materials
found in the different land cover classes. Areas with urban characteristics contain higher
amounts of metal, stone and concrete, materials with a high thermal mass combined with a
higher absorption at short wavelengths (dependent on surface coatings). Build up surfaces
have lower water availability for evaporation and thus more heat is heating up the material
itself. Forests and other vegetated areas are permanently cooled by evaporative cooling
and transpiration of trees, increasing vapor content and heat capacity of the air.

5.1.1 Classification

The methodology employed for land cover classification involved the multi-step process
utilizing satellite imagery, feature enhancement and machine learning techniques shown
in Figure 9 and described in section 3.2. The primary data source for classification were
8-band Landsat images, which provided a comprehensive spectral view of the area to
be classified. To augment the dataset and enhance the classification accuracy, Gabor
filtering (see section 3.3) was applied to the Landsat images. As input, the Gabor filtered
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multispectral data of satellite images from two dates were used. The multi band image
was loaded and cut to match the study area and reduce processing time by reducing data
size.
The analysis used the following parameters:
The Gabor filter used for feature engineering was varied using different σ, θ and f values.
Due to computational restrictions the number of rotations (θ) was limited to 5, a value of
4 yielded in best results. For ease of variation the σx value was varied while the σy =

σx

2
,

giving a 2:1 kernel ratio (shown in Figure 12).
For σx > 2 the classification degraded showing stripes very large patterns were detected,
a value of σx = 1 resulted in a kernel size of 7 × 7 pixel and good results. The usable
frequencies are limited by the size of the kernel and the image resolution shown in Figure 12.
Due to the low resolution, a large kernel size would detect features that are repeated with
a features size in the range of 200 m that do not occur in large quantities in urban areas.
Larger kernel sizes with higher frequencies would increase detection capability for images
with higher resolution. Figure 12 shows the used kernels for classification.
The filter bank with these kernels act as an edge and structure detection algorithm.
In structured areas with fields or buildings on a street raster, the filter amplifies the
structures, for smaller structures the filter detects edges for change in building material.
The detection is working due to the different specific albedo of the different frequency
bands, depending on material properties. The result of the convolution of all bands of the
image with the Gabor filter was then used as feature vector. By variation of parameters, a
minimal error to the reference data was achieved using 4 rotations, an asymmetric kernel
with a 2:1 ratio, two frequencies and two sigma sizes (see error calculation below). Since
the classification was done using a reproducible randomness, the parameters influencing
the result where:

• the selected images

• the number of classes to find by the k-means algorithm

• the parameter of the Gabor filter

The images were not changed for finding the best filter settings, the number of k-means
clusters was varied as well as the parameters of the Gabor kernels. One limit of the Gabor
filter parameters (rotation, size and frequency) was given by the resulting increase in
processing time, since the resulting feature vector for each band is set as

Nfeat = |θ| · |σ| · |f | (8)

with an increase of any parameter the dataset size increased significantly, creating a limit
of the parameter variation. The 1833 × 1833 pixel sized image of Bremen (covering a
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(a) Kernel 1 (b) Kernel 2 (c) Kernel 3

(d) Kernel 4 (e) Kernel 5 (f) Kernel 6

(g) Kernel 7 (h) Kernel 8 (i) Kernel 9

(j) Kernel 10 (k) Kernel 11 (l) Kernel 12

Figure 12: Filter bank of 12 Gabor filters with 4 rotations and a σx = 1 , σy = 0.5 and
f = 0.15, 0.35 and 0.4
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square of ≈ 55 km around the city centre), has a size of 13 MB per Band1. The optimal
sigma was found using systematic variation to be between 1.0 and 1.5. The frequencies of
the sine wave where varied between 0.05 and 0.5. A trade-off between computation time
and results was found using 3 frequencies shown in Figure 12.
This step was crucial in extracting and emphasizing spatial patterns and textures, thereby
facilitating more distinct classification of land cover types. For classifying surfaces the
k-means unsupervised machine learning algorithm was used. The number of classes was
varied between 8 and 12 classes, giving best results in terms of minimal Mean Squared
Error and highest Structural Similarity Measure when using 11 classes. The quality of
the feature vectors was judged by the output of the classification that is covered below.
The feature enhanced data of images of Bremen were used of multiple years to create the
unsupervised k-means clustering model. The classified image has 11 classes that are shown
in table 1.

Table 1: Land Cover Classes Identified

Class
Num-
ber

Land Cover Type ESRI Class

1 Water Water / Flooded Vegetation

2 Vegetated Residential Build Area

3 Clouds / PV Build-up2

4 Fields & Meadows Crops

5 Agricultural Crops

6 Industry Build Area

7 Residential Build Area

8 Bare Soil, Rock Bare

9 Vegetated Residential
(moist)

Build Area

10 Industry Halls Build Area

11 Forest / Dense Vegeta-
tion

Trees & Crops

1After feature detection the resulting dataset would be 107 MB per Band resulting in around 1.2 GB for
each 8 band Image for each time point within the used classification training dataset.

2Analysed images do not contain clouds over the urban areas
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Figure 13: Change between reference prod-
uct and k-means LU/LC classifi-
cation

In Figure 13 this difference is shown between
the 2019 LU/LC and 2022 LU/LC. The major
differences are all seen outside of the city area
and can be attributed to changes on agricul-
tural land, e.g. harvesting or change in vege-
tation type. During the available time neither
classification nor reference data showed signif-
icant land use changes within the urban area
of Bremen. The majority of changes occurred
at the interfaces between two classes that are
caused by errors in georeferencing, naturally
occurring changes in vegetation growth and
uncertainties due to spacial resolution. Due
to the missing LU/LC changes within the
given time frame, the analysis of the impact
of land cover changes could not be completed.
In section 7.8 possible areas with LU/LC er-
rors are listed as areas to be studied in the

future.
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5.2 Validation of Classification results

The model was validated using the Sentinel-2 10 m Land Use/Land Cover product (ESRI
LULC 2024). Since the reference data uses 8 classes, the used classes where mapped to
the best fitting class as indicated in table 1. Clouds, cloud shadows and snow/ice where
not used for training and verification and removed for the analysis, since reference images
do not contain clouds and images were selected to not contain ice, snow and clouds within
relevant areas. The Esri 10m-LU/LC Dataset was obtained using the ESRI land cover
explorer (Zhang 2024) and scaled to the 30 m resolution of the Landsat images. It can
be seen from the difference between the LU/LC classification and the main difference in
categorization is along the edges between different class patches. This can be explained by
differences in the categorization approach, where the reference dataset is using averages
for the whole year while the classification for the data is done at a single point in time.
This can lead to an over detection of vegetation or water classes due to season or weather
impact on the single point in time classification. A simple comparison of difference can
be done by calculating the Mean Squared Error for each classification of the image using
eq. (9), where m and n are the sizes of the image and reference image respectively. Where
I and K images with the pixel values at index i and j.

MSE =
1

m · n

m−1∑
i=0

n−1∑
j=0

[I (i, j)−K (i, j)]2 (9)

The score given by this gives and rough estimation of the difference between the images
and the trained model was then used to classify other cities and datasets from different
times. Part of the training data as well as different time data from the same area was used
and Feature enhanced using the same Gabor-Filter bank.

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
xσ

2
y + c2)

(10)

µ are the mean values of each image, σ is the variance of each image and σxy the covariance
of each image. c1 and c2 are stabilizing constants derived from the dynamic range of the
imageZ. Wang, Simoncelli, and Bovik 2003, Equation 6. For the SSIM the scikit-image
implementation was used (Walt et al. 2014). Structural Similarity Measure returns a value
between 1 (identical images) and -1 (inverted images) with 0 for images with no similarity
(Z. Wang, Simoncelli, and Bovik 2003). The Structural Similarity Measure of the images
was calculated as 0.98 ±0.001 showing very high similarity.
The classification labels were assigned, based on the proximity of the cluster centres of the
training data, to the cluster centres of the K-means fit (see section 3.4.1). This approach
ensured that each land cover class was consistently labelled independent of the area of
study.
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5.2.1 Urban Area Extraction

The resulting classified image was then processed to extract urban areas. The algorithm
used the classes 1, 2, 6 and 11 from table 1 to detect areas that can be considered urban.
The areas were processed, using dilation and erosion, to isolate core urban areas. For
small gaps between parts of the city, covered by vegetation (parks or railways), dilation
was used to bridge gaps and close small holes. Small thin links, such as highways, between
larger areas are cut, to create separate urban areas. After preprocessing the areas were
enumerated and all areas that cover at least 1% of the selected image section where used
to create buffer zones. Buffer zones were defined as described in section 4.2.1. The result
for the urban area of Bremen can be seen in Figure 14.

Figure 14: Urban Area of Bremen, with buffer zones for Adjacent and Peri Urban Area
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5.3 Analysis

The results of this classification can be seen in Figure 15.
In Figure 16a and Figure 16b the different pixel values and the measured LST and NDVI

Figure 15: Classification result

values are plotted of the classified results. Especially the Water and Dense Vegetation
classes are distinctly separated from the rest of the clusters within the NDVI and LST
plane. The scatter plot also shows that the principle components of the classifications are
not simply NDVI and LST but the added feature dimensions play a significant role in
separation of classes.
The urban area shown in Figure 14 yielded a usable output shape following the Bremen

city borders, this was manually verified using the visible images and third party visible
satellite images.
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(a) Classification distribution on a day with higher temperatures

(b) Classification distribution on a day with lower temperatures

Figure 16: Result of clustering plotted with NDVI and LST values and cluster centres
(coloured squares)
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Figure 17 shows the classification of pixels within the peri urban area. It can be seen, that
the pixel of the peri urban area has a mixed surface classes dominated by vegetation classes.
Parts of these are removed (Residential, Vegetated Residential, Industrial & Industry Halls
and Bare Soil) if in a linked area of more than ≈ 25 ha of size, to remove other larger
settlements that could distort the measurement. This distribution matched the expected
peri urban distribution, prior to removal of close by larger settlements.

Figure 17: Distribution of surface types within the peri urban area (prior to filtering)
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Figure 18: Areas with UHIs detected in both
times

The temperature values of the different ar-
eas are calculated by overlaying the masks
on the thermal band of the Landsat data.
The average temperature and variance is
calculated for the peri urban and the ur-
ban area. Using the average temperature,
UHIs are detected using the definition from
section 4.2 within the area defined by the
urban mask. The areas that are above the
threshold are then detected within the ur-
ban mask, the resulting UHIs are shown
in Figure 19. The white area is the urban
mask of Bremen and the detected UHIs, are
circled in black. Some areas extend to the
suburban area around, thus looking cut in
this visualisation. Figure 18 is a differential
image marking the areas affected by UHIs in both times. The white areas are sections
where UHIs were detected at both times. The found areas could be further investigated, if
health risks or high heat have negative side effects within these areas.
In Figure 20 and Figure 21, the temperature distributions within the different classes is
shown. Confirming previous research, classes with high vegetation and water are lower in
temperature. The 2022 day was colder, with mixed cloud cover, explaining the significantly
lower temperature of PV / Cloud classes. The variance of the temperatures of the colder
day is lower showing a higher difference in mean temperature between classes. The PV /
Clouds class also included some cumulus clouds outside of the city area further decreasing
the temperature values within this class.
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(a) Map of the detected UHIs in June 2019

(b) Map of the detected UHIs in June 2022

Figure 19: Overview of Bremen UHIs at different times 39
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Figure 20: Distribution of pixel LST [°C] values per class June 2019
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Figure 21: Distribution of pixel LST [°C] values per class June 2022
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Figure 22 and Figure 23 show the NDVI values of the same classes. One unexpected
observation is the wide spread of the water class over the whole range of the NDVI, where
it is expected to be ≤ 0. This can be explained by the fact that the highly vegetated
riverbank areas are also classified as water based on the additional features, changing
the NDVI values assigned to this class. To calculate the diff between LU/LC at different
points in time, a median filter is applied to reduce single pixel changes at class interfaces.
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Figure 22: Distribution of pixel NDVI values per class 2019
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Figure 23: Distribution of pixel NDVI values per class 2022
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Each detected UHI was further investigated by detecting the dominating class within the
UHI area. The separated classes are plotted against UHI Tmax in Figure 24 Industrial and
sealed surfaces are the most common class found within areas affected by UHI. Very few
UHIs classes were dominated by any class associated with high vegetation classes. The
image shows, that the residential area includes the hottest UHI while Industrial UHI have
a higher average max temperature.

5.4 Conclusions

The usage of Landsat imagery, with a Gabor filtering, K-means based classification
constituted a robust methodology for land cover classification. The filter parameters
on the Gabor filter were optimal with an absolute MSE of 0.3 ±0.05 (class values 0 =
water, 1 = urban and 2 = non-urban) for two years of classification, which is an error
of 10%. Using the more detailed Structural Similarity Measure, the index is 0.98 ±0.001

showing very high similarity (1 would be identical images, -1 inverted images and 0 for
no similarity). These metrics were found highest with a filter bank of 12 asymmetric
7 × 7 px kernels, using 3 frequencies, 4 rotations and a sigma of 1.0 and 0.5) in x- and
y- direction respectively (see Figure 12). The number of classes that are distinguishable
varies by season and is limited by computing power, one possible improvement is the use of
reducing machine learning algorithms, that identifies the principle components that have
less variance between seasons. Additionally using parallelization by means of libraries such
as dask (Dask Development Team 2022), allow bigger filter banks and additional steps to
the pipeline to increase output quality. Another simple way that was not utilized was to
incorporate the QA layer provided by the Landsat L2 data product, that provide per pixel
probability values for water and cloud detection, that could remove outliers in the water
and cloud classes and therefore provide higher quality results for the other classes. One
way of increasing accuracy of the results is an increase in resolution, that allows the Gabor
filter bank to have a wider range for usable values. In Figure 12 it can be seen that the
first kernel of each rotation is nearly identical, due to to missing resolution. This would
allow to detect smaller features. Another improvement might be the implementation of
weights for the feature and original image values. Due to the missing changes within the
image time frame no impact on the urban heat islands within Bremen due to urbanization
or construction can be seen. The analysis of the classes dominant in the UHI clearly
show that the surface type does have an significant influence on the creation of urban
heat islands. Industrial and sealed surfaces are the most common class found within areas
affected by UHI. No UHIs had an majority of pixels associated with high vegetation classes,
confirming previous findings.
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(a) 2019

(b) 2022

Figure 24: Analysis of the majority classes within areas of UHIs and the associated
temperature distribution
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6 Impact of Climate Change on Urban Heat Islands

6.1 Introduction

The interaction between global and local climate is a complicated process that has multiple
parameters, and is not yet fully understood or directly measurable (see section 1). While
rural areas and the global south is most effected in terms of temperature increase and
drought, the excess mortality of heat waves is greatest within city areas (Gabriel and
Endlicher 2011). During high temperatures the threshold of negative health effect shows
to be lower in northern European cities compared to Mediterranean cities (Baccini et al.
2008). The negative health consequences and increased mortality is affecting elderly the
most and the excess mortality is an immediate effect (Baccini et al. 2008). In western
Europe the climate is governed by a transitional climate, with attributes from maritime
and continental climate. The summer is, compared to southern Europe, milder and not
regularly affected by burning and heat waves. The temperatures in major European cities
have increased at a similar pace than the global mean temperatures. In Bremen, the
5-year-average temperature has risen from 1990 (13.79° C) by 1.4° C to 15.20° C in 2020.
The change over the past 20 years in monthly averages is shown in Figure 25.

Figure 25: Change of monthly air temperature average compared to average of 1981–
2010 (Deutscher Wetter Dienst 2024a)

6.2 Methodology

Measurement of the impact of rising temperatures have to be done after correcting for
other variables such as urban development and meteorological impact factors such as wind
and rain. To achieve this, a time series of land surface temperatures and UHIs from 1990
to 2022 was created using Landsat 7 and Landsat 8 and 9 data. Data from two weather
stations in the areas were used to calculate the trend of mean temperature over the time.
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The UHIs data was then correlated with the air temperature data of the local measurement
stations and corrected for size increases of UHI impacted by land cover change in the
previous step. This way all UHIs that would be impacted by urbanisation or change of
surface type were excluded from the analysis.

6.2.1 Data Handling

One of the challenges arising during the processing of multiple images were the large
amount of data of the images and feature bands. To reduce the memory footprint of
the processing chain, xarray (Hoyer and Hamman 2017) was used. Xarray allows lazy
loading from disk, this only loads parts of the complete dataset. Another feature of
xarray that was used are labelled data. Each loaded image used latitude and longitude
as coordinates allowing to accessing sub areas by reference coordinates. Another axis
was added for the time dimension, so that each area could be stored in a single data file,
but access is done loading only the relevant data for a specific time or a selected time frame.

For this step the following data was loaded from the previous dataset:

• Band data from the area of interest (Band 1 to 10)

• Classification label, a layer with the numerical classifications assigned to each pixel

• Urban mask, a layer with urban, suburban and peri-urban areas

• UHIs, for each time step a layer, masking urban heat islands

6.2.2 Land Surface Temperature Calculation

The LST can not be measured directly by a satellite but must be calculated from the
upwelling thermal infrared radiation and corrected for the atmospheric perturbation. For
Landsat 7 and Landsat 8 data is provided in different processing levels. For analysis
of past data that has already be processed the level 2 data can be used, that provides
land surface temperature and has been calculated from the level 1 data. To derive the
level 2 data from level 1 data, Top of Atmosphere (TOA) brightness is used, corrected
for stray light (Landsat 8 specific, see (Zanter 2019, p. 67 )) and instrument distortion.
Geometric and geographic terrain-correction (Zanter 2019, p. 44 ) is applied, resulting in
an geolocalized image. The TOA temperature data is calculated according to eq. (11),
where K1 and K2 are band specific conversion factors from the meta data file and Lλ is
the spectral radiance at the TOA in W

m2·srad·µm e.g. the Band 10 Channel.

T =
K2

ln
(

K1

Lλ
+ 1

) (11)
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To get the level two data from these TOA measurements the value is corrected for emissivity
of the ground using measurements from the ASTER GED database (see USGS 2014).
The temperature is also corrected for atmospheric interference using local reference
stations. The USGS uses reference stations, atmospheric models and independent reference
measurements from other satellites to calculate the surface temperature. The surface
temperature product has an accuracy of ±1K overall and other uncertainties are marked
in a quality assurance file provided for each image.
To convert the image file containing 16 bit, unsigned integers into a temperature eq. (12) is
used. The scaling and offset factors are specific to the product and were taken from Earth
Resources Observation And Science (EROS) Center 2013, Table 6-1.

TC = TK − 273.15 = DN · 0.00341802 + 149.0− 273.15 (12)

Where DN is the Digital Number (a 16 bit integer) stored in the image file, the multiplication
factor as well as the 149.0 offset are provided in the meta data file and in the Landsat user
manual (Earth Resources Observation And Science (EROS) Center 2013). The accuracy
of the resulting temperature value is given by the user manual as also ±1 K.

6.2.3 Local temperature rise

For investigating a city, the next ground based measurement stations was used as reference.
This data was correlated with the SUHI intensity as well as the measured temperature
data from the times of the satellite data acquisitions. For German cities the stations of
the DWD are used, these have very accurate readings and a long archive of measurements.
One indicator interesting in the research on UHIs is the number of days with very high
temperatures. There are multiple threshold days that are used to classify seasons in
comparison to the average. Hot days (defined by the DWD as days with a maximum
temperature over 30 °C), summer days (maximum temperature over 25 °C) and tropical
nights (days with daily minimal temperature over 20 °C), are tracked by meteorological
organisations (Deutscher Wetter Dienst 2024b). Another measurement to visualize a rise
in average temperature is the amount of frost days (where the minimal temperature is
below 0 °C). The Figure 26 and Figure 27, show the development of these indicators for
Bremen over the past 82 and 32 years respectively.
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Table 2: Bremen weather data using data from Deutscher Wetter Dienst 2024a

Extremly
Cold

Average Extremly
Warm

min mean max

Annual average °C
(Jahr)

7.2
(1940)

9.4 11.1
(2020)

Abs. T °C
(Jahr)

-23.6
(Feb. 1940)

37.6
(Aug. 1992)

Summer days
(Tmax ≥ 25 °C)

4 27.7 78

Hot days
(Tmax ≥ 30 °C)

0 4.9 22

max mean min

Frost days
(Tmin < 0 °C)

105 70.8 24

Ice days
(Tmax < 0 °C)

54 14.9 0
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Figure 26: Number of cold and hot days over time in Bremen, Germany 1940-2022
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Figure 27: Number of cold and hot days over time in Bremen, Germany 1990-2022
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6.3 Analysis

Bremen was selected as the base area of the study, to be able to verify classification results
using personal local knowledge. The study area covers the city centre of Bremen and an
area of 27 km in all directions covering an area of approximately 3000 km2. The study
area is at sea level elevation and has a temperate-oceanic climate according to the Köppen
and Geiger 1930 classification. An overview of the climate of Bremen is shown in table 2.
The development of threshold days over time are shown in Figure 26, the strongest change
can be seen in Figure 27 and the downward trend in frost days. Together with the increase
in tropical nights over the past five years and the increased appearance of hot days for
the past 3 years after 6 decades with no or one hot day per decade, this fits the trend of
global rise in temperatures.

The weather station in Bremen is located at the airport on the edge of the city area.
For comparison of air temperature with a more rural area the DWD weather station
“Worpswede-Hüttenbusch” located roughly 30 km north-north-east of the weather station
and is located in a rural area (see Figure 28). To verify that the measurements of the

Figure 28: Location of the weather stations in Bremen and the rural reference station in
Worpswede-Hüttenbusch

urban and rural stations, the difference in daily measurement values of both stations is
shown in Figure 30 and Figure 31. It can be seen that the atmospheric UHI over Bremen
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is affecting the Bremen airport station. In the period from April to October in 2015 the
daily mean temperature was 0.6 ° C lower at the rural station. In the same period in
2022 the daily mean temperature was 0.85 ° C lower at the rural station. The Stations
are calibrated to provide comparable weather data with high levels of accuracy (error
smaller ±0.2° C (LES 2024)). Figure 29 shows the offset of minimum, maximum and
mean temperature daily temperature over the year. This indicates that the atmospheric
heat island of Bremen is affecting the airport weather station.

Figure 30 and Figure 31 exemplary show the lack of usable satellite imagery for Bremen

Figure 29: Mean yearly station offset urban rural station

in green. Especially finding cloud free cover of the area with similar seasonal and weather
patterns was difficult.
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Figure 30: Absolute Differences between measurement stations [°C] and days with satellite coverage (green) in 2015
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Figure 31: Absolute Differences between measurement stations [°C] and days with satellite coverage (green) in 2022
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Figure 19 shows two summer days in Bremen with different temperatures and the influence
of temperature onto the UHIs size and shapes. In the image from 2019 (Figure 19a), the
average temperature was much higher at the time. It can be seen that the heat islands,
while statistically the same difference to the peri urban temperature, increase in size and
combine into larger structures. In table 4 the properties of the UHIs for different days
within the urban area is shown.

The analysis of the UHIs at the analysed dates, shows a strong increase in maximum and
average heat island size, with rising temperatures. UHIs smaller then 5 pixel (4500 m2)
were excluded, to mitigate impact of outliers. Figure 32 shows the distribution of sizes and
maximum temperatures within the UHI. Most heat islands are small with a wide range of
temperatures, the few very big heat islands are within the mid range of temperatures.
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(a) 2019

(b) 2022

Figure 32: Maximum Temperatures of the detected UHIs and area above threshold
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Table 3: Comparison of Air Temperature, LST and UHI size for Bremen

Air Temperature LST

Date Urban Rural ∆T Urban Rural

Tmin Tmean Tmax Tmin Tmean Tmax Tmin Tmean (std) Tmax Num. UHIs Tmin Tmean(std) Tmax

2019–06–29 15.9 24.7 31.9 17.7 25.4 30.7 -0.7 22.9 34.2 (3.5) 61.4 102 22.92 35.2(3.77) 61.4

2022–06–21 6.9 15.7 22.3 7.6 15.6 23.0 -1.0 4.4 29.0 (4.4) 56.7 34 4.7 29.7 (4.4) 56.7

Table 4: Comparison of Urban Heat Islands in Bremen over time

Date Number UHIs min area [m2] mean area [m2] max area [m2] UHImax Tmean [°C] UHImax Tmax [°C]

2019–06–29 102 4500 74691 962100 47.7 52.0

2022–06–21 34 4500 58950 370800 46.4 51.6
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7 Conclusion

Due to the limited remote sensing data availability at summer dates with similar weather,
statistical analysis is not conclusive. There is an increase in number, mean size and
maximum size visible with rising average temperatures. The maximum temperatures are
very similar and do not increase linearly with average temperatures. Analysing each UHI for
more parameter and using measurements from different sources, e.g. ground measurement
campaigns to refine and verify measurements. The data indicates size increases of SUHIs
with rising temperatures, due to lack of measurement stations there is no data on the
impact of the inner city air temperature distribution. In the following sections the answers
to the research questions are recapitulated.

7.1 What definition can be used to define UHIs comparably?

An SUHI is an area with increased surface temperature within an urban space. It is defined
as having a temperature at least 3 standard deviations above the average temperature of
the adjacent rural buffer zone. This measurement is corrected for larger settlements. This
definition can be used to compare urban areas in different settings and surroundings.

7.2 What is the influence of LU/LC change on the size of urban

heat islands?

A strong correlation exists between dominant surface types and urban heat island size.
Surfaces with high NDVI and low surface sealing tend to have lower temperatures. Conse-
quently, these areas feature few, if any, urban heat islands.

7.3 How significant is the impact of urbanisation on UHIs, both in

terms of absolute and relative temperature changes?

Sealed surfaces and industrialized areas are most impacted by and are major sources of
urban heat islands, regardless of average reference temperature. Surface types typically
associated with urbanisation and human activity, are most affected by UHIs. These
Surfaces are bare, sealed areas (parking lots, runways, bare ground and industry lots),
industrial areas and high density residential and commercial zones, commonly found within
city centres. The study area did not allow to investigate areas impacted by surface type
changes, due to lack of a large enough change within the observed time frame. The strong
correlation and other studies show that urbanization without mitigations is a strong driver
for UHIs formation.
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7.4 What is the effect of rising average temperatures on the UHIs

effect?

The weather data from the DWD shows an increase of average temperature from 1990 to
2020 of 1.4 °C average yearly temperature. Combined with the findings of the influence of
average temperature on UHIs size increase, this subject could be investigated further. To
answer this question with a significant statistical analysis, additional satellite imagery is
needed (e.g. Landsat-7 or Sentinel-3 footage, if enhanced with a super resolution algorithm)

7.5 What indices can be used or created to categorize and rate

UHI intensity?

The use of indices like the HI (see section 2.4.2) and WBGT (see section 2.5) are useful
tools to measure and predict the danger and risk of UHI. One requirement for the use of
these are either weather stations within areas affected by UHIs or a model transforming
LST to air temperature values.

7.6 Summary

The study shows that even in higher latitudes the surface temperatures caused by anthro-
pogenic surface modification causes high surface temperatures. The impact of climate
change indicates an increase of hot days and tropical nights in temperate climate zones,
increasing the risk of negative health effects and dangerous air temperatures during summer
and heat waves.
It was also shown that Landsat data can independently be used for surface classification
with high accuracy compared for single day classification, when combined with feature
engineering such as Gabor filters using unsupervised machine learning. At time of the study
the availability of cloud free remote sensing data posed a severe hurdle. The proposed
statistical definition could be helpful to compare UHIs in different climate zones and
seasons. Urban area extraction, adapted from the suggestion of Sobrino and Irakulis 2020
approach, has shown to follow the natural borders of the city well. All posed questions were
answered but the results where inconclusive due to the lack of data or land cover change.
The work showed that there are insides to be gained by the study of UHIs, even in cities at
higher latitudes. Rising global temperatures show the need for scientific understanding and
pose multiple opportunities for modelling and investigating the UHI phenomena further.
The results may help future research by showing what areas are to be investigated and
what approaches and indices can be used to measure health impact and danger of UHI.
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7.7 Limitations and Challenges

While the connection of ground based sensor stations with remote imagery works well, a
direct reliable conversion from land surface temperatures to air temperature, since there is
a temporal and seasonally different energy transport between surfaces and surrounding air.
Another limiting factor was the availability of suitable cloud free satellite footage of the
area of study. While with the introduction of Landsat 9, the amount of footage doubled, in
regions with high cloud cover (like Bremen) and due to the not evenly distributed coverage
times of the satellites (2d apart), this resulted in very few images that were useable for the
statistical analysis. Due to the low numbers, the results are not statistically relevant and
another satellite product or future results need to be used to come to a significant outcome.
Observing the impact of land cover change another study area is needed, where significant
land cover changes are done. This could be areas that have high growths or construction
(see section 7.8) or areas that were impacted by catastrophes or war, artificially changing
the surface properties

7.7.1 Data

Another limiting factor was the availability of suitable cloud free satellite footage of the
area of study. While with the introduction of Landsat 9, the amount of footage doubled, in
regions with a lot of cloud cover like Bremen, the amount of usable footage is very limited.

7.7.2 Software

For the analysis of the Area Of Interest, a python application and script assortment was
developed. It has was developed with adaptability in mind so that the The software was
written in python code used for generating the data, the documentation of the code is
located within the doc folder. The main.py is documented using the –help option. This
file provides download and classification of Landsat data.
The LST2.py file can be run to detect urban heat islands when the classification was done
previously. The integration of this part into the main.py functionality is still outstanding.

7.8 Outlook and Future Work

The overall results of this work allowed to identify many further areas of studies. The
classification part could be improved by using a widely available product that has a
suitable resolution. During development a 300 m and 10 m reference product were used
(see section 5.2), the first was considered not precise enough for these measurements.
The second reference product used had 10-m resolution, but was limited by the avail-
able temporal resolution of one year, with yearly averages. Since the selected Area Of
Interest did not contain sufficiently large LU/LC changes within the urban area, multiple
sides where selected that could be of interest for future studies using the same methodology.
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Leipzig 416 is a construction project within the city center of Leipzig. The construction
started in 2021 and a significant land use change was observed in that area.
One interesting area of study would be the Leipzig 416 Project, an urban district de-
velopment project, currently being constructed in the city centre of Leipzig, designed
to be environmentally friendly, vegetation rich and designed after sponge city concepts.
Monitoring the development of UHIs in the area and surrounding could show how effective
modern urban planning is compared to the previous situation.

Another interesting non-urban area of study could be large construction projects in
previously rural areas, like the Tesla Factory in Grünheide, the Berlin Brandenburg Air-
port in Germany, the ITER (International Thermonuclear Experimental Reactor) near
Marseilles in France and the impact on the surrounding micro climate and fauna caused
by the LU/LC change.
Another topic of interest could be the scientific study and monitoring of implemented
mitigating techniques. Allowing rating of effectiveness for installed countermeasures to
find optimized, cost effective solutions for the mitigation of UHIs, adapted to the local
conditions.

Using the same methodology on other European cities, affected by high heat or pol-
lution gives the opportunity to verify the methodology and the findings of this work
and investigate if patterns and differences exists when comparing similar cities. Cities of
interest found during this work are:

• Frankfurt am Main

• Valencia

• Stuttgart

• Essen

• Karlsruhe

• Berlin

• Madrid
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8 Appendix

8.1 Use of AI based tools (Nutzung KI basierte Anwendungen)

According to the Eigenständigkeitserklärung section 8.2.3 the use of so called AI tools
needs to be declared. During this work the following tools were used:

• OpenAIs ChatGPT (OpenAI 2023) for aid during programming, help with formula-
tions, getting topic overviews and aid in finding keywords for further research.

• Kagi’s summerizer (Kagi Inc. 2024), to deem papers relevant.

All informations from these tools were used as an aid and were always cross-checked with
primary sources.

8.2 Content of the Data Storage device

All data and the software used to create the figures and images for this document are
available on the storage device. The software is also available online in the linked GitHub
repository. The software version last used for this document is tagged with the name:
master-submission The following artefacts can be found in these locations.

8.2.1 Additional Figures

Additional Figures can be found in the “Image” folder on the storage Medium.

8.2.2 Data

The data is stored in multiple subfolders. The Data folder contains the different cities as sub-
folders, within each of these folders, there is a dataset folder, containing a xarray dataset
named dataXarrayCITY_NAME.nc of the used area of interest, including all bands and the
classifiction at all times analysed during this project. The dataXarrayCITY_NAME_feat.nc
contains the extracted feature bands from the Gabor feature extraction. The ML_Model

folder contains a “pickeled” k-means model, a file containing a numpy array with cluster
centres for the label assignment.

8.2.3 Code

The src.zip contains the python code used for generating the data, the documentation of
the code is located within the doc folder. For the description and starting point of the
software see Section 7.7.2. The following folder structure was used for the code artefacts:

• The main folder contains scripts that run and process data directly

• The folder preprocessing contains scripts for processing and preparing land sat images
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• The processing folder contains scripts to calculate different indices and prepare the
surface classification of the Landsat Data

• The visualisation folder contains helper functions for plotting images
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